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A family of helically symmetric vortex equilibria
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We present a family of steadily rotating equilibrium states consisting of helically
symmetric vortices in an incompressible inviscid irrotational unbounded fluid. These
vortices are described by contours bounding regions of uniform axial vorticity.
Helical symmetry implies material conservation of axial vorticity (in the absolute
frame of reference) when the flow field parallel to vortex lines is proportional to
(1 + ε2r2)−1/2, where ε is the pitch and r is the distance from the axis. This material
conservation property enables equilibria to be calculated simply by a restriction on
the helical stream function. The states are parameterized by their mean radius and
centroid position. In the case of a single vortex, parameter space cannot be fully
filled by our numerical approach. We conjecture multiply connected contours will
characterize equilibria where the algorithm fails. We also consider multiple vortices,
evenly azimuthally spaced about the origin. Stability properties are investigated
numerically using a helical CASL algorithm.

1. Introduction
The generation of helical tip vortices in rotor wakes is of major significance in

the study of many applications of propeller and wind turbine flow dynamics. Recent
research has highlighted the importance of such wakes trailing wind turbines and the
subsequent consequences of strong tip vortices interacting with other turbines in the
wind farm (Okulov & Sørensen 2007; Walther et al. 2007). These studies model
the wake by a system of N tip vortices, which are infinitely long slender helical
vortices, equally azimuthally spaced and an additional axial hub vortex.

Widnall (1972) was the first to consider the linear stability of a helical vortex
filament by calculating the self-induced velocities due to sinusoidal perturbations of
the filament. Studies presented by Okulov (2004), Fukumoto & Okulov (2005) and
Okulov & Sørensen (2007) have continued this procedure of evaluating the induced
velocity field and have extended it to a multiplicity of vortices to address the problem
of the rotor wake. Such research has remained predominately asymptotic and has
been concerned almost exclusively with vortex filaments of small core radius, e.g.
Rcore � dcen, where dcen is the distance from the centre of the filament from the central
axis.

Despite this recent interest in helical vortex stability, there has been no general
theory to enable a complete description of helical vortex equilibria of arbitrary size. In
a classical paper in fluid dynamics, Norbury (1973) computed, numerically, equilibria
for the axisymmetric problem of a vortex ring. This class of equilibria is parameterized
by a mean core radius, and each equilibrium state consists of a single closed contour
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bounding a distribution of azimuthal vorticity which is proportional to r , the distance
from the axis of symmetry of the ring. Axisymmetric vortex rings are amongst the
most widely studied fluid dynamical structures and have a multitude of applications,
both in physical problems and as mathematical constructs.

This work aims to adapt Norbury’s approach and apply it to that of helical vortices.
We make use of helical symmetry to compute equilibria of constant pitch (ε = 1) by
considering a cross-section of constant height z and parameterizing the family of
equilibria not only by a mean radius R̄ of arbitrary size but also by a centroid
position d , which can also be considered as the radius of the vortex system (in
applications to wind turbine wakes, d is the rotor radius). We find that for such
helically symmetric flows, and for a special choice of the velocity component parallel
to vortex lines, we have material conservation of axial vorticity ω in an absolute frame
of reference (such conservation was first noticed by Dritschel (1991) but ω was not
identified with axial vorticity). An interesting study worthy of mention by Alekseenko
et al. (1999) also notices this conservation. We may thus consider a contour bounding
a uniform distribution of ω for which a constant helical stream function ψ upon this
boundary in a rotating frame of reference implies an equilibrium state. The two main
problems posed by this approach are in inverting a linear helical operator L ψ to
compute velocities upon the contour and also in parameterizing the contour itself.
The former is performed via a combination of spectral methods and finite differences
and the parameterization uses a particularly effective ‘time-travel’ coordinate.

In the first instance we consider the case of single-vortex equilibrium states and
then extend our method to N equally spaced vortices in azimuthal angle.

2. Helical symmetry
Let us consider an unbounded, inviscid, incompressible fluid which possesses helical

symmetry (Landman 1990; Dritschel 1991), i.e. invariant to rotation and translation.
We are able to reduce the problem to two dimensions by considering a cylindrical
polar description (r, θ, z) and introducing the helical coordinate φ = θ + εz. Here ε

is the pitch of the helix taken in our equilibria computations to be ε = 1 without
loss of generality (ε =0 recovers two-dimensional flow, ε → ∞ the axisymmetric case
and ε =1 represents a helix which performs a single twist in an axial distance of
2π, see figure 1). We now introduce the helical vector h defined as orthogonal to ∇r

and ∇φ:

h = h2(ez − εreθ ),

h2 = (1 + ε2r2)−1.

Helical symmetry now implies that velocity, vorticity and pressure do not vary with
h and h · ∇ applied to any scalar function of r , φ and time t is zero. We may then
define the unit vector for the helical coordinate φ by

eφ = h−1h × er = h(eθ + εrez),

which reduces the gradient operator to ∇ = er∂/∂r + eφ(rh)−1∂/∂φ. We are now able
to decompose the velocity and vorticity fields in terms of helical scalar functions

u = h × ∇ψ + hυ, (2.1)

ω = h × ∇χ + hζ , (2.2)
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Figure 1. Schematic of the helical coordinate system. Note that the vectors h and eφ lie on
the surface of the cylinder r = constant. For the special class of flows considered, the vorticity
ω is everywhere tangent to h.

which automatically enforces the incompressibility and divergence-free vorticity
conditions. The individual velocity components can be expressed as

ur = −1

r

∂ψ

∂φ
, (2.3)

uθ = h2

(
∂ψ

∂r
− εrυ

)
, (2.4)

uz = h2

(
υ + εr

∂ψ

∂r

)
. (2.5)

The definition of vorticity ω = ∇ × u furnishes us with the well-known helical
equation coupling vorticity and velocity (Landman 1990; Dritschel 1991):

L ψ ≡ 1

r

∂

∂r

(
rh2 ∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
= ω + 2εh4υ, (2.6)

where ω = h · ω = h2ζ . We must also have that χ = −υ .
We seek steadily rotating vortex solutions in a flow which is irrotational as r → ∞

(in fact the flow will be rotational only within one or several helical vortex tubes). To
this end it is convenient to express the flow in a rotating frame of reference (ωR , υR ,
ψR , etc.):

ω = ωR + 2Ω,

u = uR + Ω × x,



248 D. Lucas and D. G. Dritschel

where Ω = Ωez is the rotation rate (to be chosen so that the flow is steady in this
frame). Taking the scalar product of h with these equations gives

h · ω ≡ ω = ωR + 2Ωh2 = ωR + ω̄(r),

h · u = h2υ = h2υR + h · (Ω × x) = h2υR − εr2h2Ω,

i.e. υ = υR − εr2Ω = υR + ῡ(r).
Similarly, we can express the stream function as ψ = ψR + ψ̄(r) and use (2.6) to

derive ψ̄(r):

L ψ̄(r) = ω̄(r) + 2εh4ῡ(r) = 2Ωh4,

and solving for ψ̄(r) gives

ψ̄(r) =
1

2
Ωr2, (2.7)

given that we require bounded velocities.
Now turning to the full nonlinear dynamical equations in the rotating frame we

have from Dritschel (1991),

∂υR

∂t
+ J (ψR, υR) = −2εΩ

∂ψR

∂φ
, (2.8)

∂ωR

∂t
+ J (ψR, ωR) = 2εΩh2 ∂υR

∂φ
+ 2εh4

(
J (ψR, υR) − ευR

∂υR

∂φ

)
, (2.9)

where J (f, g) is the Jacobian, defined in helical coordinates as

J (f, g) =
1

r

(
∂f

∂r

∂g

∂φ
− ∂g

∂r

∂f

∂φ

)
,

and the terms proportional to Ω in (2.8) and (2.9) account for the effect of background
rigid rotation.

Rewriting (2.8) and (2.9) in terms of the absolute frame variables υ and ω, we find

∂υ

∂t
+ J (ψR, υ) = 0, (2.10)

∂ω

∂t
+ J (ψR, ω) = 2εh4

(
J (ψ, υ) − ευ

∂υ

∂φ

)
. (2.11)

Hence, for the special case υ = constant, considered henceforth, it follows that the
quantity ω is materially conserved :

Dω

Dt
≡ ∂ω

∂t
+ J (ψR, ω) = 0. (2.12)

For a general helically symmetric flow with bounded momentum, it can be shown
that υ must in fact be equal to the conserved circulation multiplied by −ε/2π. This is a
non-trivial result and will be discussed in further detail in § 3. Since χ = −υ =constant
in (2.2), we can express the full vorticity field in terms of ω:

ω = ωez − εrωeθ . (2.13)

Note that ω is everywhere tangent to h. It is the conservation of ω in (2.12) which
provides us with a means to compute equilibria consisting of a contour bounding
a uniform distribution of ω in a constant z cross-section and irrotational flow in
the absolute frame away from the vortex. Each equilibrium state must then satisfy
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J (ψR, ω) = 0, i.e. for a single contour, the quantity ψR = ψ − 1
2
Ωr2 must be constant

on the contour.

3. Inverting L ψ

Having determined the prescription for an equilibrium state in terms of the helical
stream function ψ we are faced with the task of accurately inverting the helical
operator L ψ . In this section we present a numerical method based on both Fourier
transforms and finite differences to perform this inversion for a general distribution
of axial vorticity. In addition we verify the method against an analytic solution for a
particular distribution of ω.

The first step is to express ψ and ω as Fourier series in φ:

ψ =
∑

m

ψ̂m(r)eimφ and ω =
∑

m

ω̂m(r)eimφ,

allowing us to rewrite (2.6) as

L̃mψ̂m =
d

dr

(
rh2 dψ̂m

dr

)
− m2

r
ψ̂m = rω̂m, (3.1)

for m > 0. Numerically, we are able to use the fast Fourier transform algorithm
(with 512 wavenumbers) to transfer between physical and spectral space in this way,
and hence solve (3.1) for each azimuthal wavenumber m > 0 by approximating the
equation by central differences (we address the m =0 case later). In doing this we
obtain a symmetric tridiagonal system of difference equations, easily inverted via the
Thomas algorithm. To solve for large radii a novel approach is employed whereby
we divide the radial grid in two parts, with a uniform grid close to the origin and a
stretched grid, scaled by h, for large radius, enabling increased accuracy for smaller
r . Specifically, we use the coordinates

r r < rm,

s = b + crh r > rm,

where rm is the grid transition radius, chosen such that the vorticity is fully contained
within this radius. We integrate (3.1) up to s = sm = c + b corresponding to rh = 1, i.e.
r = ∞. The constants c and b are given by continuity conditions at rm:

ds

dr

∣∣∣∣
r = rm

= 1 ⇒ c = h−3
m ,

sm = rm ⇒ b = rm(1 − chm) = −εr3
m,

so s = h−3
m rh − εr3

m. In the calculations to follow a total of 400 intervals in r and s are
used and a comparison with an analytic test solution is presented in Appendix A.

We now turn attention to the problem of the axisymmetric (m = 0) mode ψaxi , and
first note that we are able to decompose this mode into a υ-independent part ψ̂0 and
a υ-dependent part ψυ:

ψaxi = ψ̂0 + ψυ,

where ψυ satisfies

d

dr

(
rh2 dψυ

dr

)
= 2ευrh4,
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which we can solve directly to give

ψυ =
1

2
υεr2, (3.2)

given that we require bounded velocities at the origin.
Now for large r we can rewrite our expression for the axial velocity (2.5) purely in

terms of the axisymmetric mode (since the contribution from all other modes tends
to zero in this limit):

lim
r→∞

uz = lim
r→∞

{
υ + εrh2 dψ̂0

dr

}
.

In order for the axial momentum of the system to remain bounded we require that
this limit goes to zero and we can satisfy this constraint by setting

υ = − lim
r→∞

εrh2 dψ̂0

dr
, (3.3)

a constant. It is possible to relate this constant to another conserved quantity, namely
circulation, defined as

Γ ≡
∫ ∫

A

ωdA =

∮
C

u · dx

(this is conserved due to material conservation of ω and incompressibility). Here C

is a contour sufficiently large to bound all the vorticity. Substituting in the velocity
components (2.3) and (2.4) and considering a contour for constant z we can express
circulation as

Γ =

∮
C

rh2

(
∂ψ

∂r
− εrυ

)
dφ −

∮
C

1

r

∂ψ

∂φ
dr.

Consider now a circular contour of radius r → ∞. Noting that for large r the
stream function ψ becomes independent of φ, since in this region ω = 0, we find

Γ = 2π lim
r→∞

(
rh2 dψ̂0

dr

)
= −2πυ

ε
⇒ υ = −εΓ

2π

using (3.3). Considering now the calculation for the complete axisymmetric stream
function we first make the following observations. From (3.1) for m =0 we can write

rh2 dψ̂0

dr
=

∫ r

0

r ′ω̂0(r
′) dr ′, (3.4)

which tends to Γ/2π for r → ∞. We can now add the contribution from ψυ , having
substituted for υ into (3.2), and rewrite (3.4) as the difference of two integrals (from
0 to ∞ minus from r to ∞) giving

rh2 dψaxi

dr
=

Γ

2π
(1 − ε2r2h2) −

∫ ∞

r

r ′ω̂0(r
′) dr ′,

⇒ dψaxi

dr
=

Γ

2πr
− 1

rh2

∫ ∞

r

r ′ω̂0(r
′) dr ′,

showing that dψaxi/dr tends to 0 as r → ∞ like Γ/2πr . Numerically, we use the
equivalent expression obtained by adding (3.4) and dψυ/dr:

dψaxi

dr
= S0(r),
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where

S0(r) =
1

rh2

∫ r

0

r ′ω̂0(r
′) dr ′ − ε2rΓ

2π
,

which we have already shown tends to Γ/2πr as r → ∞. Integrating S0 with respect
to r produces a logarithmic singularity as r → ∞. To avoid this numerically, the
singularity is treated explicitly by adding and subtracting the function

f (r) ≡ ε2rh2Γ

2π
,

from the right-hand side, using

f (r) = − Γ

2π

d log h

dr
,

leading to

ψaxi =
Γ

2π
log h +

∫ ∞

r

(f (r ′) − S0(r
′)) dr ′.

Now both the integrand and the integral are finite for all radii. We proceed by this
technique in our numerical inversion, computing the integral via the trapezoidal rule.

4. Computing equilibrium states
Having discussed the method of computing the helical stream function we are now

able to address the problem of computing the equilibrium states. As mentioned in
§ 2 the equilibrium states are those for which ψ − 1

2
Ωr2 is constant upon a contour

bounding a uniform distribution of ω. We now consider the problem in terms of a
contour with z =0, i.e. a vertical cross-section and consider such a contour bounding
a region of uniform axial vorticity ω = 1.

We expand the constraint on ψ about the previous iteration or ‘basic state’ and
linearize, computing both the contour perturbation and angular velocity Ω at each
iteration, while preserving area and centroid position. This process is repeated with
the updated contour becoming the basic state until the maximum perturbation falls
inside a prescribed threshold (10−12) compared to the mean radius. The states are
thus parameterized by the mean radius R̄ and centroid d and the numerical algorithm
spans families of states for a given R̄ or d .

Let the new contour be x = x0 + x ′ where x0 is the previous state and x ′ is a small
correction. Likewise let Ω =Ω0 + Ω ′, linearizing ψ − 1

2
Ωr2 = C yields

x ′v0 − y ′u0 − Ω0(x0x
′ + y0y

′) − 1

2
Ω ′ (x2

0 + y2
0

)
= C − ψ̃(x0, y0), (4.1)

where

u0 = − ∂

∂y
ψ (x0, y0) , v0 =

∂

∂x
ψ (x0, y0) ,

ψ̃(x0, y0) = ψ(x0, y0) − 1

2
Ω0

(
x2

0 + y2
0

)
.

To define the contour in terms of a single variable and allow the calculation of
a single perturbation quantity, we parameterize the contour following the method
of Dritschel (1995) (Appendix B) whereby a normal displacement multiplied by a



252 D. Lucas and D. G. Dritschel

‘perturbation function’ constitutes the disturbance, i.e.

x = x0 + x ′ = x0(α) +
{dy0/dα, −dx0/dα}

(dx0/dα)2 + (dy0/dα)2
η(α), (4.2)

where η is a perturbation function. In general α can be any parameterization of the
contour but here we take it to be the ‘travel-time coordinate’, i.e. proportional to
the time taken for a fluid parcel to travel a fixed distance along the contour (for
convenience α =2π is taken as a full circuit of the contour). This parameterization
simplifies the problem significantly and circumvents difficulties which arise for
particularly elongated contours when using a polar type parameterization.

The basic state velocity on the contour in the rotating frame is given by

ũ0 =
∂x0

∂α

dα

dt
,

and dα/dt is defined by our definition for α to be

dα

dt
= Ω̄,

where Ω̄ is defined as the frequency of the rotation of the fluid elements around the
boundary x0. This is independent of α and implies that in a given increment of time
all locations along the contour will move through the same increment of α. Thus the
parameterization reduces the first three terms of (4.1), i.e.

x ′v0 − y ′u0 − Ω0(x0x
′ + y0y

′) = ṽ0x
′ − ũ0y

′

= Ω̄η(α).

Now (4.1) gives

η(α) =
1

Ω̄

(
C − ψ̃(x0, y0) +

1

2
Ω ′ (x2

0 + y2
0

))
. (4.3)

So we have an equation for the perturbation function in terms of the previous state
x0, C and Ω ′. We calculate C and Ω ′ from the equations for area and centroid of the
contour. In terms of a contour integral we can express the area as

A =
1

2

∮
x dy − y dx.

Substituting our expansion x = x0 + x ′, linearizing to first order and substituting in
our time-travel coordinate parameterization (4.2) gives

A = A0 +

∫ 2π

0

η dα, (4.4)

where A0 is the area from the previous iteration. Substituting for η from (4.3) we
have

A = A0 +
1

Ω̄

∫ 2π

0

(
C − ψ̃(x0, y0) +

1

2
Ω ′ (x2

0 + y2
0

))
dα. (4.5)

The contour integral formulation for the x centroid position is given by

d =
1

3A

∮
x (x dy − y dx) .
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As with the area we expand in perturbation terms, linearize to first order and
substitute in our parameterization (4.2) yielding

Ad =
1

3

∮
x0 (x0 dy0 − y0 dx0) +

∫ 2π

0

x0η dα,

and substituting for η from (4.3) gives

Ad =
1

3

∮
x0 (x0dy0 − y0dx0)+

1

Ω̄

∫ 2π

0

x0

(
C − ψ̃(x0, y0) +

1

2
Ω ′ (x2

0 + y2
0

))
dα. (4.6)

We are now able to calculate Ω ′ and C from (4.5) and (4.6) (effectively a 2 × 2
system) which in turn enables us to update the perturbation function η and thus
update the contour. Numerically these integrals are evaluated using a trapezoidal rule
on 400 contour points.

5. Results
Having parameterized the states in terms of a mean radius R̄ and centroid d , we

compute equilibrium states by fixing R̄ or d and incrementing the other. Circles are
provided as a first guess and convergence is generally achieved within around 20
iterations. Subsequent computations use the previous state, or an extrapolation of
two previous states, as a starting point for the routine.

5.1. The single vortex, N = 1

Figure 2 shows a sample of different equilibrium states from across parameter space.
These plots show the projection of the contour to form the three-dimensional helix.
In particular we note that while the contour in the plane z =0 can be quite elongated
and curved for large d , the core of the vortex, viewed from a plane perpendicular to
h (or ω), is close to circular. For smaller d we find the contours in the z = 0 plane are
themselves closer to circular, this being nearer to the core projection. Attention is also
drawn to (a) and (b) in the figure which show states of identical mean radius R̄ = 2.20
and exceptionally close centroid, d = 0.695 and d = 0.696. Despite their proximity
in parameter space these states are quite distinct. Turning now to figure 3 we are
able to observe where the different states lie within parameter space. Of particular
importance is the region where the code fails to converge (shown as a bold line), the
states mentioned above being at the lower boundary of this region. These limiting
states indicate that multiply connected contours may describe the equilibria inside this
region. The states on the left-hand edge of the boundary are cusp-like, for example
figure 2(a), while those on the right-hand edge are more curved and elongated, e.g.
figure 2(c). We conjecture that states inside the left edge will have a small hole,
pinched off at this cusp, and those inside the right edge will have a larger hole, where
the edges of the curved contour have ‘coalesced’. These conjectures are substantiated
by simulations carried out in § 5.4.

5.2. Multiple vortices, N > 1

Having examined parameter space in the case of single-vortex equilibria we extend
the method to consider N evenly azimuthally spaced vortices. Clearly this implies a
geometric restriction on the mean radius of the vortices dependent on the centroid
radius d . We show results for the limiting states in this regime in figure 4. The contours
computed show quite a degree of variation over parameter space and for small d in
the cases of 2 and 3 vortices these states take on the configuration of two-dimensional
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Plots of equilibrium states for a sample of parameter space: (a) R̄ = 2.20, d = 0.695;
(b) R̄ =2.20, d = 0.696; (c) R̄ =2.75, d = 0.85; (d ) R̄ = 1.50, d =2.50; (e) R̄ = 2.50, d = 2.50;
(f ) R̄ = 2.55, d =0.6 . Shown are the contours along with the full three-dimensional helical
vortex, viewed from a perspective of 30◦ elevation and 20 units from the origin. Three spirals
of the helix are shown here.

corotating vortices computed by Dritschel (1985) where the limiting behaviour is for
the vortices to pinch toward the origin. As d increases we see helical effects becoming
more pronounced. The contours becoming increasingly curved and elongated and the
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Figure 3. Plot of parameter space, for a single vortex, showing the boundary where
convergence is not achieved with insets of equilibrium states.

vortices close up around the circle radius d . As with the single-vortex case we see
contours which are closer to circular for smaller d .

Figure 5 shows parameter space for the cases of N = 2 and N = 3 vortices, the
transition from the two-dimensional type states is notable by a distinct change in the
curve showing the boundary of the limit of convergence. The states in this transition
region neither close together at the origin nor around the circle, rather they flatten
and form an edge facing inwards.

5.3. Diagnostics

In addition to axial vorticity and circulation, there are two further invariants for these
flows, namely ‘excess’ energy E and angular impulse J per unit axial length (the axial
momentum is proportional to J ). The angular impulse is

J =

∫ ∫
ωr2 dx dy =

ω

4

∮
(x2 + y2)(x dy − y dx),

for a vortex patch of constant vorticity ω.
The ‘excess’ energy (minus an infinite constant proportional to the square of

circulation) is (Dritschel 1985)

E ≡ −1

2

∫ ∫
ωψr dr dφ,

conservation of which can be derived in the standard way by multiplying (2.12) by
ψ and integrating. To convert this into a contour integral, we use Stokes’ Theorem
repeatedly to give

−E =
1

4
ω

∮ [
ψ − 1

r
gh2 ∂ψ

∂r
+

ω

8

(
r2 +

1

3
ε2r4

)]
r2 dφ +

1

4
ω

∮
g

r

∂ψ

∂φ
dr,

where

g(r) =
1

2
r2 +

1

4
ε2r4.

These integrals are computed using cubic interpolation of the contours together with
a two-point Gaussian quadrature method in each of the 400 intervals. This enables
an accurate estimation of J and E over the entire parameter space. The calculations
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(a) (b)

(c)

(e)

(d)

Figure 4. Plots of equilibrium states showing typical limiting states for N =2, 3 and 4 vortices:
(a) N = 2, R̄ = 1.34, d = 2; (b) N = 2, R̄ =0.355, d = 0.50; (c) N = 3, R̄ = 0.82, d = 2; (d ) N =
3, R̄ =0.2, d = 0.36; (e) N = 4, R̄ = 0.6, d = 2. Contours are shown along with the full
three-dimensional helical vortex viewed from the same perspective as in figure 2, with plots
(a), (c) and (e) showing two full twists and (b) and (d ) showing a single twist of the helix.

of energy and angular impulse were verified by noting that for a circular patch
of constant vorticity the expressions reduce to E = 1

4
R4π( 1

4
− log R) and J = 1

2
πR2

(independent of ε, where R is the radius of the patch).
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Figure 5. Plots of parameter space for N = 2 (a) and N = 3 (b) vortices showing the
boundary where convergence is not achieved with insets of equilibrium states.

The energy, angular impulse and rotation rate of the single-vortex states are shown
in figure 6. These quantities confirm that there is a jump in the nature of the states
over the gap in parameter space. This is not unexpected as we have already observed
a clear distinction in the shapes of the limiting states, c.f. figure 3.

Validation of the numerics has been carried out to check the computed values
for rotation rate by considering small-amplitude waves on an axisymmetric helical
vortex in Appendix B. It is worth mentioning that the dispersion relationship is not
that of Kelvin (1880), who considered a Rankine vortex with only axial vorticity.
Here helical symmetry implies we have an additional azimuthal component of
vorticity (see (2.13)), and hence an associated axial flow. Further corroboration
has been sought by comparing with the asymptotic approximation derived by
Widnall (1972). This comparison however suffers from several limitations. First,
the asymptotic approximation considers filaments of small core radius and small
pitch, a regime in which our numerical computations are most sensitive to numerical
error. Second, the approximation contains a correction term which requires much
extra work to compute and which is simply read from the plot in Widnall (1972) in
more recent work (see, e.g. Ricca 1994). The result is poor agreement. For d =0.5,
ignoring the correction term (a small negative contribution for ε =1), we have at
R̄ = 0.12, Ω = −0.0091 compared with Widnall’s approximation ΩW = −0.0085, while
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Figure 6. Contours of diagnostics for N = 1. (a) shows angular impulse J , (b) angular velocity
Ω and lower plots excess energy E. Contour intervals are �J = 10, �Ω = 0.1 and �E = 10
for global energy plot (c) and �E = 0.1 for lower half-plane plot (d ).

for R̄ = 0.18, Ω = −0.018 compared with ΩW = −0.015 (where ΩW is the rotational
frequency of Widnall (1972). A more convincing validation is given in Appendix B.

Figure 6(d ) also shows energy contours in the lower half of parameter space.
It has previously been observed in two-dimensional flows (Dritschel 1995) that an
extremum of energy and angular impulse in parameter space may coincide with the
margin of stability for vortex equilibria. In particular this extremum must occur over
states which have equivalent circulation, in this case, for a given R̄. Figure 6 shows
a shallow minimum for increasing R̄. These is no corresponding extremum in J ,
by contrast to two-dimensional flows, and direct numerical simulations of perturbed
equilibria have yet to indicate any instability.

In the case of multiple vortices, we compare states with equal total circulation Γ in
order to compare like states. This requires that if the mean radius of the single-vortex
equilibrium is R̄1 then the N vortex case has the individual mean radii scaled by
1/

√
N so that the total area of the patches is equal (i.e. R̄N = R̄1/

√
N). Of particular

interest in figure 7 is a reversal in the rotation rate for small d , R̄1 when N > 1. Hence
there are equilibrium states for which Ω is zero. We also observe that increasing the
circulation brings the trend for the single vortex closer to that of the multiple vortex
case, where we have a noticeable steepening for small d .

We have attempted to compare our results for Ω with the asymptotic slender vortex
results derived by Okulov (2004). Again comparisons are difficult due to the small



A family of helically symmetric vortex equilibria 259

0.09

0 1 2 3

d

0 1 2 3

d

0 1 2 3

d

Ω

Ω

(a)

N = 2

N = 1

N = 4N = 3

0.15

0.03

–0.03

–0.09

–0.15

N = 1

N = 2

N = 4

N = 3

0

–0.07

–0.14

–0.21

–0.28

–0.35

–0.37

–0.45

–0.53

–0.61

–0.69

(b)

(c)

N = 1

N = 2

N = 3

N = 4

Figure 7. Plots of rotation rate Ω for fixed circulation or total area A1 with curves for
N = 1, 2, 3 and 4; (a) A1 = π/4 (R̄1 = 1/2); (b) A1 = π (R̄1 = 1) and (c) A1 = 9π/4 (R̄1 = 3/2).

core size but also due to limitations in the asymptotics. Okulov tabulates values of
non-dimensional rotation rate minus a constant containing a logarithmic singularity
as the core radius goes to zero. This constant term is actually of leading order and
compromises the accuracy of any comparison. Nonetheless comparisons can be made;
premultiplying Ω with −4πd2/Γ to be consistent with the non-dimensionalization
in Okulov and considering N = 2, d = 1 and R̄ = 0.15, we find Ω = 0.97 for the
dimensionless rotation rate compared with ΩO = 1.097 in Okulov after reintroducing
the logarithmic term. Similarly considering R̄ = 0.12 with other parameters fixed we
find Ω = 1.04 compared with ΩO = 1.02. In both examples the logarithmic term is
O(1).

5.4. CASL simulations

This section presents results from dynamical simulations carried out using an adapted
CASL algorithm whereby contours of ω are advected by the flow field computed by
inverting L ψ as discussed in § 3 of this paper. The reader is referred to the papers
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t = 0 t = 67 t = 133 t =200

Figure 8. CASL simulation for the N = 1, R̄ =2, d = 2 state with perturbation �d = 0.01.

t = 0 t = 50

t = 100 t = 200

Figure 9. CASL simulation for the N =1, R̄ = 2.64, d = 0.8 state with perturbation
�d = −0.03.

of Dritschel & Ambaum (1997) and Macaskill, Padden & Dritschel (2003) for a
more detailed description of the model. Although this model limits one to the purely
helical evolution of vorticity, we are able to deduce the validity of our equilibrium
states and their stability (to spatial perturbations) under helical symmetry (and for
υ = constant). In addition we are able to validate the conjectures made regarding the
gap in parameter space when N = 1.

Simulations are carried out with a time step �t =0.025 (the CASL algorithm
uses a standard fourth-order Runge–Kutta time integration) together with 400 radial
intervals and 512 azimuthal intervals. The equilibria are perturbed by displacing all
the x coordinates of the contour nodes by some increment �d . All figures shown in
this section are in the rotating frame of the equilibrium state.

Figure 8 shows a generic single-vortex equilibrium state, R̄ = 2, d =2 perturbed by
a small amount �d = 0.01. Virtually no effect is felt by the vortex, even at late times.
The only dynamical response is a slight change in the rotation rate.

Figures 9 and 10 show simulations for N = 1 where limiting states at the boundary
in parameter space are perturbed in the direction of the gap. Figure 9 shows an
elongated contour from the right edge of the gap, closing over and cutting off a
region of zero vorticity within the vortex edge. Hence the equilibrium evolves into a
multiply connected state. Figure 10 shows the entrainment of filamentary structures
of irrotational fluid into the vortex. For large time, the filaments congregate into a
small region of zero vorticity inside the vortex. These simulations provide compelling
evidence that multiply-connected equilibrium states exist in the gap. Notably, despite
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t = 0 t = 20

t = 60 t = 200

Figure 10. CASL simulation for the N = 1, R̄ = 2.2, d = 0.6 state with perturbation �d = 0.1.

Figure 11. Final frame for CASL simulation, t = 200, left-hand plot shows the R̄ = 2.64,
d = 0.8 state with perturbation �d = −0.105 and the right the R̄ =2.64, d = 0.59 state with
perturbation �d =0.105.

the distinct change in the shape of the contour, the vortices remain coherent and
robust. In the case shown in figure 10 filaments entrained inside the vortex coalesce
into a single patch of zero vorticity inside the vortex. The changes in topology occur
through the removal of extremely thin filaments by ‘surgery’ ( Dritschel 1988) at a
tenth of the inner radial spacing of the grid. This allows the vortex to relax to a
quasi-steady state while only very weakly dissipating angular impulse and energy.

To gain a more comprehensive picture of the interior states, simulations were
carried out perturbing the edge states from either side of the gap by an equal and
opposite amount. This gives the evolution of two different states of the same mean
radius at the same centroid location d . Figure 11 shows the final frame for large
time of these simulations for the limiting states at R̄ = 2.64 and suggests that there
is the possibility that more than one equilibria state exists for a particular point of
parameter space inside the gap. It is conceivable that multiply-connected equilibria
exist anywhere in parameter space, not solely in this region where we were unable to
find singly connected states.

As previously suggested, these single-vortex states are remarkably stable to finite-
amplitude perturbations. To demonstrate this, we performed a simulation where the
equilibrium for R̄ =1 and d = 1 was perturbed by �d = 1, i.e. a full doubling of the
centroid. Figure 12 shows the flow evolution. Although the contour deforms strongly
and has a substantial anomaly in its angular velocity, it remains coherent after only
tiny filaments have been expelled.
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t = 20t = 0 t = 100 t = 200

Figure 12. CASL simulation for the N = 1, R̄ = 1, d = 1 state with perturbation �d =1.

t = 1 t = 25 t = 50 t = 500

Figure 13. CASL simulation for the N = 2, d = 2, R̄ = 1.34 state with perturbation �d = 0.01.

t = 1 t = 50 t = 100

Figure 14. CASL simulation for N = 3, d =2, R̄ = 0.5 state with perturbation �d = 0.01.

In contrast to the strong stability of the single-vortex states, the multiple-vortex
states present more varied results. Generally it is found that the vortex states for
R̄ � d are more robust than those for which R̄ ≈ d . Perturbing states in which the
vortices are larger and more closely spaced, we observe that the rotation rates of the
individual patches diverge from the rotation rate of the system, causing the patches
to move together and interact. Figures 13, 14 and 15 show this for N = 2, 3 and 4
vortices, respectively. The long-time behaviour, in particular for the two vortex case,
shows the vorticity tending towards a single patch type configuration, as we have
observed to be stable in helical dynamics.

6. Conclusions
This paper has presented a numerical method for computing equilibrium states for

helically symmetric vortices. A novel approach using Fourier transforms and finite
differences on a two-part grid was employed to invert the linear operator L ψ for
a general distribution of axial vorticity. A property which has proved crucial in
allowing the computation of these equilibrium states is that helically symmetric flows
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t = 1 t = 40 t = 500

Figure 15. CASL simulation for N = 4, d = 2, R̄ = 0.5 state with perturbation �d =0.01.

materially conserve axial vorticity when the flow parallel to vortex lines is proportional
to (1 + ε2r2)−1/2. Moreover, the constant of proportionality is uniquely determined by
the integral of axial vorticity over a cross-section z =constant (the circulation), by the
requirement of bounded momentum per unit length. Equivalently, this conservation
property follows from restricting the vorticity to be everywhere tangent to the helical
vector h.

Here we have computed equilibria described by contours bounding regions of
uniform axial vorticity ω = 1. The equilibria depend only on their radius and centroid
position. The contours are parameterized by a time-travel coordinate to allow arbitrary
distortions. In the single-vortex case we have been able to compute equilibrium states
over all of parameter space apart from a specific region where we conjecture only
multiply-connected states exist. CASL simulations support this conjecture and also
demonstrate the remarkable stability of the states. It should be noted, however, that
this stability is for purely helical dynamics and previous asymptotic results (Widnall
1972) suggest that instability would likely occur in the full three-dimensional dynamics.

In the case of multiple vortices we have computed equilibrium states over parameter
space and determine where geometric constraints prevent equilibria. We see a
distinction between the states for small radial spacing d , where we have a configuration
analogous to the two-dimensional vortex equilibria of Dritschel (1985), and the
states for moderate or large radial spacing, where helical effects become important.
Simulations show helical instability for larger, more closely spaced configurations,
with the long time evolution tending towards a single patch configuration.

When considering equilibrium vortex configurations, one must entertain the
possibility that there exists a multiplicity of states for a fixed location in parameter
space. In the case of a single two-dimensional Rankine vortex patch we now know
that there is an infinite multiplicity of states arising from the linear displacement
modes proportional to eimθ (see Saffman 1992). When m =2, these states are elliptical
(Kirchhoff 1876). These elliptical states have a self-induced rotation, Ω = ωλ/(1+ λ)2,
associated with them which is dependent upon the aspect ratio λ of the patch.
Analogous states almost certainly exist also in helical flows, for vortices centred on
the z-axis (see Appendix B). In helical flows an additional rotation is induced by
the curved shape of the vortex as it twists around the z-axis. If we now consider,
as in this work a single vortex not centred on the z-axis but displaced from it by
a small distance d , an equilibrium in some rotating frame of reference requires that
the self-induced rotation (for d = 0) nearly matches the rotation of the curved vortex
about the z-axis. This additional requirement for helical flows suggests that the vortex
shape is unique for a given dimensionless mean radius εR̄ and displacement εd . We
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hence conjecture that there are no other single-vortex equilibria for εd > 0 than the
ones we have found here.

We motivated this work by the recent studies on rotor wake flows (Okulov &
Sørensen 2007; Walther et al. 2007) and many parameters commonly associated with
such applications can easily be represented by the parameters used here (noting first
that setting ε = 1 sets the length scale of the system). Parameters such as rotor radius
d and pitch ε are readily available and the circulation of each vortex has been
discussed in § 3 and is proportional to R̄2. The advance ratio, commonly utilized in
aerodynamics, defined as the ratio of the velocity of the flow over the rotor to the
angular velocity of the rotor, can be expressed here as simply 1/dε (velocity of flow
over the rotor can be expressed as 2π/εT and angular velocity 2πd/T where T is the
period of rotation). Although the problem of the rotor wake is not directly addressed
in this work, care has been taken to ensure that the size, strength and configurations
of vortices considered are of such a general nature as to be applicable to a variety of
applications.

The problem of the rotor wake can be more fully addressed in future work by
adapting this method to include a central hub vortex consistent with the rotor wake
configuration. This introduces two additional parameters to the problem, namely the
strength and size of the inner vortex. Also of interest is to extend the method to
consider multiply connected patches of vorticity.

The equilibrium states found in this paper can be adapted for use as non-trivial
test cases in the simulation of the three-dimensional Euler equations and are a step
more complex than Norbury’s vortex rings. We plan to use these states to test a new
hybrid Lagrangian–Eulerian algorithm for the three-dimensional Euler equations.

Dan Lucas would like to acknowledge the support of the School of Mathematics
and Statistics at the University of St Andrews and also the C. K. Marr Educational
Trust for jointly funding this research.

Appendix A. Analytic solution
It is possible to construct analytic solutions to (3.1) via the use of Green’s functions

for the case of circular, compact distributions of ω̂, corresponding to ω = ω̂(r)eimφ .
Following the general theory of Green’s functions we seek a solution of the form

ψ̂(r) =

∫ ∞

0

G(r; r0)r0ω̂(r0) dr0,

where G is Green’s function and satisfies the homogeneous equation L̃ G = 0 (see
(3.1), here we take ε = 1 consistent with the results presented). It can be shown that
Green’s function has the form

G(r; r0) =

{
rr0I

′
m(mr)K ′

m(mr0) r < r0

rr0K
′
m(mr)I ′

m(mr0) r > r0

,

where Im and Km are the modified Bessel functions of the first and second kind, of
order m, and a prime denotes a derivative with respect to the argument.

Consider an idealized axial vorticity defined by

ω̂(r) =

{
1 r < R

0 r > R
,
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Figure 16. Plots showing difference in the numerical calculation of ψ̂ and the analytic solution

(A 1) (E = log10 |ψ̂ana − ψ̂num|) for a circular distribution with radius R =1, wavenumber m= 2
(a) and radius R = 2, wavenumber m= 3 (b).

for a circular cross-section, radius R. Then the stream function becomes

ψ̂ =

{
−rK ′

m(mr)
∫ r

0
r2
0 I

′
m(mr0)dr0 − rI ′

m(mr)
∫ R

r
r2
0K

′
m(mr0)dr0 r < R

−rK ′
m(mr)

∫ R

0
r2
0 I

′
m(mr0)dr0 r > R

. (A 1)

This analytic solution for ψ̂ allows the numerical inversion to be accurately verified
for this particular distribution of axial vorticity.

Figure 16 displays plots showing the difference between the analytically computed
solution (e.g. (A 1) with integrals computed via a midpoint rule), and the numerically
computed solution computed on the two part grid as described in § 3. We have very
good agreement and suffer partial loss in accuracy across the boundary of the circular
vortex patch.

Appendix B. Dispersion relation for a columnar vortex with helical symmetry
Over a century ago Lord Kelvin calculated the dispersion relationship for

infinitesimal linear perturbations of a uniform vortex column (Kelvin 1880). The non-
axisymmetric azimuthal disturbances with azimuthal wavenumber m =1 are known
as bending modes and correspond to helical disturbances of the vortex. This work was
generalized by Moore & Saffman (1972) to include an axial flow which subsequently
became the starting point for many asymptotic studies of a helical vortex filament,
e.g. Ricca (1994), Kuibin & Okulov (1998). Linear stability of a Rankine vortex with
a discontinuous axial flow and the addition of swirl has been considered by Loiseleux,
Chomaz & Huerre (1998) who computed frequencies for the helical bending modes.
It is, however, possible to generalize this linear theory yet further by considering an
axisymmetric columnar vortex with helical symmetry.

Starting from linear theory we expand about the basic state. We note that, due
to the presence of azimuthal vorticity (ω = ωez − εrωeθ ), there is a parabolic axial
flow within the undisturbed vortex given by ūz = 1

2
ωε(r2 − R2). Note also that ūz =0

outside the vortex. Due to material conservation of ω, (2.12), we can restrict attention
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Figure 17. Curves showing the numerically computed rotation rate Ω (for d = 0.02) and the
analytical bending mode frequencies, Ω1 and ΩK , of a perturbed axisymmetric helical and
rectilinear vortex, respectively, against non-dimensional wavenumber εR = R or ka.

to deformations of the vortex edge in the plane z = 0. This implies that the perturbation
vorticity ω′ = 0 both inside and outside the vortex boundary. The linearized version
of (2.6) then gives simply L ψ ′ = 0, and expressing ψ ′ = �(

∑
m ψ̂m(r)eimθ−iσ t ) we have

solutions to the homogeneous problem as given in Appendix A, namely

ψ̂m = AG(r; R), (B 1)

where G is Green’s function and A is a constant to be determined by matching the
velocity components at the boundary.

Defining the perturbed vortex edge as r = R + η(θ, t), where R is the radius of the
undisturbed vortex, we use the fact that η evolves materially according to

Dr

Dt
= ur ⇒ Dη

Dt
= ur ⇒ ∂η

∂t
+

uθ

r

∂η

∂θ
= ur.

Rewriting η as η = �(
∑

m η̂meimθ−iσ t ) we obtain after linearization(
1

2
ωm − σ

)
η̂m = −m

R
ψ̂m(R) = −mA

G(R; R)

R
, (B 2)

given the simple form of the velocity field for an axisymmetric uniform helical vortex.
We now require the velocity field to be continuous on the perturbed boundary

r = R + η. The radial component consists only of a perturbed part and is continuous
over r by the continuity of ψ̂m. The azimuthal component has a mean part whose
shear jumps across the boundary. Continuity of the full azimuthal component then
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Figure 18. Curves showing the analytical linear mode frequencies, Ω1 to Ω5, of a perturbed
axisymmetric helical vortex against non-dimensional wavenumber εR.

implies a jump in the perturbed part, i.e. [u′
θ ] =ωη, at r = R, upon linearization. This

implies

ωη̂m = h2(R)

[
dψ̂m

dr

]
⇒ ωη̂ =

A

R
, (B 3)

from (B 1) and Appendix A. Continuity of axial velocity yields the same relationship.
Substituting (B 3) into (B 2) leads to the dispersion relation

Ωm = − σ

mω
= −1

2
+ (εR)2I ′

m(mεR)K ′
m(mεR), (B 4)

where we have now restored the dependence on pitch. In our analysis ε is the direct
analogue of the axial wavenumber k and εR is a dimensionless axial wavenumber
(denoted ka in Saffman 1992) The dispersion relation (B 4) is not the same as the one
derived by Kelvin (1880) who assumed a two-dimensional (non-helical) basic state
with ω = ωez in contrast to ω = ωez − εrωeθ in helical flows.

This expression for Ωm furnishes us with a further validation of our numerics.
For m =1, (B 4) gives an approximation for the rotation rate Ω (for ω = 1), in the
regime d � 1. Figure 17 shows Ω1 from (B 4) versus the numerically computed Ω (for
d = 0.02), together with the rotational frequency obtained by Kelvin (1880) against
dimensionless axial wavenumber. Notice that despite considering a more complex
flow, the dispersion relation derived here is much simpler than Kelvin’s, allowing the
precessional frequency of the vortex to be directly calculated without having to solve
a transcendental equation. The curves for Ω1 and Ω indicate very close agreement of
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the numerical computations and the linear theory. These curves diverge from Kelvin’s
as axial wavenumber increases and the vortex lines become less rectilinear.

The angular frequencies of the linear helical modes, Ωm(εR) for m =1 to 5 are
plotted in figure 18 (for ω = 1). For εR � 1, these tend to the two-dimensional values
1
2
(m − 1)/m, while for εR  1, these tend to 1

2
εR/m. The existence of these modes

implies that there are finite-amplitude non-axisymmetric helical vortex equilibria also
for m > 1 centred on the z-axis.
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